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Abstract— We consider the design of H2 optimal static
structured feedback gains for large-scale interconnected sys-
tems. The design of distributed controllers with access to
measurements of a small number of the subsystems imposes
particular sparsity constraints on the feedback gains. For this
nonconvex constrained optimal control problem, we study both
the primal and dual formulations to obtain optimality bounds.
We exploit the sparsity structure present in large-scale systems
by implementing an efficient quasi-Newton algorithm to solve
the primal problem. We employ the subgradient method to
solve the dual problem and obtain a lower bound for the optimal
value of the performance index. Surprisingly, in many problems
of practical interest, the upper bounds from solving primal
problems and the lower bounds from solving dual problems
are almost identical, suggesting the lack of duality gap in these
applications and that the globally optimal structured gains have
in fact been attained.

Index Terms— Decentralized control, large-scale systems,
sparse matrices, static feedback gains, zero duality gap.

I. INTRODUCTION

We consider the design of H2 optimal static structured
feedback gains for large-scale interconnected systems. The
control objective is to minimize the H2 norm of the closed-
loop system under the information constraints. In particular,
we consider the scenario that each controller only has access
to measurements of a small number of the subsystems. This
constraint imposes particular sparsity structure on the static
feedback gain. Although we consider static controllers, the
methods developed in this work can be extended to the design
of fixed-order dynamic controllers by the well-known system
augmentation technique [1], [2].

The closely related optimal static output feedback problem
has been studied extensively over the last four decades [3]–
[10]. This problem was originally introduced in early sev-
enties [3], it is known to be nonconvex, and many tech-
niques for computation of local optima have been proposed
ever since. Broadly speaking, these iterative methods fall
into two categories. First, the general-purpose minimiza-
tion methods include, Newton’s method [6], quasi-Newton
method [5], [9] and trust region method [10]. Second, the
special-purpose alternating methods include Levine-Athans
method [3], Anderson-Moore method [4], and their vari-
ants [7].
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The advent of linear matrix inequalities (LMIs) has
sparked renewed interest in static (or fixed-order) output
feedback design [2], [11]–[17]. It is well-known that the
unstructured H2 state-feedback problem is equivalent to a
convex problem [18] even though it appears to be nonconvex
in the feedback gain. However, the structured H2 problem
cannot be transformed into a convex problem [14], [18]
and consequently it cannot be cast into an LMI [14], [19].
The aforementioned direct iterative methods [3]–[10] are
designed for small or medium size unstructured feedback
problems. This implies that these methods can experience
computational difficulties when applied to large-scale struc-
tured feedback problems.

This paper has two important contributions:

• We develop efficient quasi-Newton method that is ca-
pable of solving large-scale problems by exploiting the
underlying sparsity structure.

• We formulate and solve the dual problem to obtain a
lower bound to the optimal value of the performance
index.

The nonconvexity of the structured H2 feedback problem im-
plies that the solution obtained by the quasi-Newton method
is in general a local minimum, which in effect provides an
upper bound to the global optimal value. It is a standard fact
in optimization theory that the solution of the dual problem
provides a lower bound to the global optimal value [20],
[21]. Perhaps surprisingly, for many worked examples, the
upper bounds from solving the primal problems and the
lower bounds from solving the dual problems correspond to
each other, indicating that the global optimality is attained.

The paper is organized as follows. We formulate the
optimal control problem and give the necessary conditions
for optimality in Section II. We develop an efficient quasi-
Newton method for the primal problem in Section III. We
formulate and solve the dual problem in Section IV. We
present the computational results for a mass-spring system
on a discrete spatial lattice in Section V, and offer concluding
remarks in Section VI.

II. PROBLEM FORMULATION AND NECESSARY
CONDITIONS FOR OPTIMALITY

Consider the following control problem

ψ̇ = Aψ + B1 d + B2 u

z = C1 ψ + Du

y = C2 ψ, u = −F y,

Forty-Seventh Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
September 30 - October 2, 2009

978-1-4244-5871-4/09/$26.00 ©2009 IEEE 340



where C1 =
[
Q1/2 0

]T
and D =

[
0 R1/2

]T
. Matrix

F denotes the static feedback gain subject to structural
constraints which dictate the zero entries of F . Let the
subspace S encapsulate these constraints and let us assume
that there is a stabilizing F ∈ S. Upon closing the loop, the
above problem can equivalently be written as

ψ̇ = (A−B2FC2)ψ + B1 d

z =
[

Q1/2

−R1/2FC2

]
ψ.

Note that d denotes exogenous signals and that the perfor-
mance output z encapsulates both the amplitude of the state
and that of the control input. We now consider the following
optimal control problem:

• Find the matrix F ∈ S such that ‖H‖22 is minimized,
where H is the transfer function from d to z and ‖ · ‖2
is the H2 norm.

Explicitly, this structured H2 (SH2) problem is given by

minimize J = trace
(
PB1B

T
1

)
subject to (A−B2FC2)T P + P (A−B2FC2)

= −
(
Q + CT2 F

TRFC2

)
, F ∈ S.

(SH2)
We are interested in sparsity constraints on F . A sparse

matrix is populated primarily with zeros and the pattern of
the non-zero entries describes the communication architec-
ture of the distributed controller. We focus particularly on
cases where F is a banded matrix, i.e., it is only non-zero
on its main block-diagonal and a relatively small number of
block sub-diagonals.

In general, the H2 norm of the closed-loop system is not
convex in the feedback gain, i.e., J(F ) is not a convex
function of F . Moreover, the set of all stabilizing state
feedback gains is not a convex set [18]. On the other hand,
the structural constraint is linear, namely,

F1 ∈ S, F2 ∈ S ⇒ a1F1 + a2F2 ∈ S,

and thus it is a convex constraint in the feedback gain.
We next state the necessary conditions for optimality of

(SH2).
Proposition 1 (Necessary conditions for optimality):

In order for matrix F ∈ S, with A − B2FC2 Hurwitz, to
be optimal for the problem (SH2), it is necessary that it
satisfies the following set of equations:

(A−B2FC2)T P + P (A−B2FC2)

= −
(
Q + CT2 F

TRFC2

)
, (NC1)

(A−B2FC2)L + L (A−B2FC2)T = −B1B
T
1 ,
(NC2)

(RFC2LC
T
2 ) ◦ IS = (BT2 PLC

T
2 ) ◦ IS , (NC3)

where ◦ denotes the element-wise multiplication of matrices.
Proof: We form the Lagrangian

L(F, P, L) = trace
(
PB1B

T
1

)
+

trace
(
(ATclP + PAcl + CTclCcl)TL

)
,

where Acl = A−B2FC2 and CTclCcl = Q+CT2 F
TRFC2.

Setting ∂L/∂L = 0 and ∂L/∂P = 0 gives the first
two equations (NC1) and (NC2), respectively. Since F is
constrained to the set S the optimality condition for F is
(∂L/∂F ) ◦ IS = 0, which gives the final equation (NC3).
We omit algebraic manipulations for sake of brevity.

The matrix IS in (NC3) denotes the structural identity of
S under the elementwise multiplication, i.e., F ◦ IS = F for
a structured matrix F ∈ S. Specifically, the ijth entry of IS
is given by

IS ij =
{

1, if Fij is a free variable;
0, if Fij = 0 is required.

For the subspaces of diagonal and tridiagonal matrices S1

and S2, respectively, IS1 is the identity matrix and IS2 is
the tridiagonal matrix with entries equal to one on its main
diagonal, first upper and first lower subdiagonals.

It is noteworthy that (SH2) problem includes other related
problems as special cases. As aforementioned, the optimal
fixed-order H2 problems can be formulated as (SH2) by
the well-known system augmentation technique [1], [2].
Moreover, by removing the constraint F ∈ S from (SH2) the
optimal static output feedback problem [3]–[10] is recovered,
for which, (NC3) simplifies to

RFC2LC
T
2 = BT2 PLC

T
2 . (NC3’)

Many algorithms have been proposed to solve the set of
coupled equations (NC1), (NC2) and (NC3’) for the static
output feedback problem [3]–[10]. We are particularly in-
terested in large-scale problems with the sparsity constraints
on the feedback gains, for which we develop an efficient
quasi-Newton method in the next section.

III. DESCENT METHOD FOR PRIMAL PROBLEM

In this section, we develop a descent method to solve
large-scale (SH2) problem with sparsity constraint on the
feedback gain. In particular, we develop an efficient im-
plementation of computing the quasi-Newton (Broyden-
Fletcher-Goldfarb-Shanno or BFGS) direction for sparse
matrix variables.

Descent methods are iterative algorithms aimed at solv-
ing the optimization problem (SH2). Specifically, given an
initial stabilizing feedback gain F 0 ∈ S, a descent method
generates a minimizing sequence {F i ∈ S} as follows

F i+1 = F i + siF̃ i,

where F̃ i is the descent direction and si is the step-size.
We consider two descent directions: negative gradient and
quasi-Newton.

The BFGS method is widely considered as the best quasi-
Newton method currently known [20]. However, the standard
BFGS method is designed for optimization variables in the
form of a vector. We develop an efficient scheme to compute
BFGS direction for optimization variables assuming the form
of sparse matrices.

The gradient direction for the problem (SH2) is given by

∇J(F ) =
(

2 (RFC2 −BT2 P )LCT2
)
◦ IS , (1)
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where L and P are the solutions of the following Lyapunov
equations

(A−B2FC2)L + L (A−B2FC2)T = −B1B
T
1 ,

(A−B2FC2)T P + P (A−B2FC2) =
−(Q+ CT2 F

TRFC2).
(2)

The above equations are derived by substituting F in (SH2)
with {F+εδF , F , δF} ∈ S . Subsequently, J can be written
as a series expansion in ε, in which the coefficient of the ε
term is

trace
((

2C2L̄(CT2 F
TR− PB2)

)
δF
)
.

This gives the gradient term (1), where L and P satisfy (2).

Let a sparse matrix Fm×p ∈ S, where m is the number
of inputs and p is the number of outputs. Let

vecF :=
[
FT1 FT2 . . . FTp

]T
where Fi is the ith column of F . Let sqz (vecF ) remove all
zero entries of vecF , which results in a vector whose length
is equal to the number of nonzero entries of F . For the 2×2
diagonal matrix example

F =
[
f1 0
0 f2

]
,

we have vecF = [ f1 0 0 f2 ]T and

sqz (vecF ) = [ f1 f2 ]T .

In other words, vF := sqz (vecF ) is the compressed vector
obtained by eliminating the zero entries of vecF . Clearly,
given vF , one can readily construct F ∈ S by the reverse
procedure. Specifically, let zi be the number of zero entries
between the ith and (i + 1)th non-zero entry of the vector
vec IS . Vector vecF can be obtained by inserting zi zeros
between the ith and the (i + 1)th entry of vF . Thus, the
structured matrix F is determined by

F = [ vF 1 vF 2 . . . vF p ]

where vF i is the vector from the ((i − 1)m + 1)th entry
to (im)th entry of vF . Similarly, we form the compressed
gradient vg := sqz (vec∇J(F )).

Given two compressed vectors vFk
and vFk+1 and their

respective compressed gradients vgk
and vgk+1 , the BFGS

update [22] to approximate the Hessian inverse of the objec-
tive function with respect to vF is given by

Hk+1 = (I − ρkskyTk )Hk (I − ρkyksTk ) + ρksks
T
k (3)

where

ρk = 1/(yTk sk), sk = vFk+1 − vFk
, yk = vgk+1 − vgk

.

The BFGS direction of the compressed vector is given by

ṽk+1 = −Hk+1vgk+1 .

To initialize the BFGS method, one can choose an initial
condition vF0 and use a gradient step to find vF1 . The initial
Hessian inverse is the identity matrix. The BFGS direction in

the form of structured sparse matrix is then readily obtained
by the aforementioned procedure.

Descent method to solve (SH2)
Given stabilizing F 0 ∈ S;
for i = 0, 1, 2, . . ., repeat

1) compute descent direction F̃ i;
2) use step-size rule to determine si;
3) update F i+1 = F i + siF̃ i;

until ‖∇J(F i)‖F < ε

For the step-size rule, we employ the backtracking line
search [21], [22]. Note that the closed-loop stability in
descent method is guaranteed by the step-size selection.

Step-size rule
Let α = 0.3, β = 0.5, si = 1 (see [21, p. 464]);
until: both conditions are satisfied

• J(F i + si F̃ i) < J(F i) + α si trace(∇J(F i)T F̃ i);
• Aicl = A − B2 (F i + si F̃ i)C2 is a Hurwitz matrix.

repeat: si := βsi

IV. DUAL PROBLEM

In this section, we study the dual problem of (SH2). In
optimization theory, the study of the dual problem can be
motivated from various aspects [20], [21]. In particular, the
solution of the dual problem provides a lower bound to the
global optimal value of the primal problem (SH2). Since an
upper bound can be obtained by finding a local minimum
of (SH2) via the quasi-Newton method, by solving the dual
problem we then effectively have an estimate of the global
optimal value of (SH2). The difference between the primal
and the dual optimal values determines the duality gap [20],
[21]. For a strictly feasible convex problem, the duality gap
is zero [20], [21]; for a nonconvex problem the duality
gap is not zero in general. However, in our computations,
several problems of practical interest have been solved with
negligible duality gaps (for an illustration, see example in
Section V). Specifically, the primal and dual optimal values
in these problems correspond to each other, indicating that
the global minima have in fact been attained.

A. Dual problem formulation

We next formulate the dual problem of (SH2). We trans-
form the structured output feedback (SH2) problem to an
equivalent structured state feedback problem. This transfor-
mation plays an important role in finding the good initial
condition in the minimization of Lagrangian in Section IV-
B. More importantly, it allows us to generalize the algebraic
Riccati equation in the standard state feedback H2 theory to a
system of a Lyapunov equation and a Riccati equation; these
two equations are coupled by the dual variables associated
with the structural constraint.

Consider the change of coordinates φ = Tψ such that

C2T = C2 T
−1 = [ Ip×p Op×(n−p) ].
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Note that this change of coordinates is not unique; namely,
since

C2 = C2T T

= [ Ip×p Op×(n−p) ]
[
T11 T12

T21 T22

]
= [T11 T12 ].

Hence, any [T21 T22 ] such that

T =
[

C2

T21 T22

]
is a full-rank matrix gives the desired coordinate transfor-
mation. One choice is [T21 T22 ] = null(C2)T , where
null(C2) denotes the orthogonal column vectors that span
the nullspace of C2.

Since the H2 norm is invariant under coordinate transfor-
mation, (SH2) in new coordinates is given by

minimize J = trace
(
PTB1TB

T
1T

)
subject to (AT −B2TFC2T )T PT + PT (AT −B2TFC2T )

= −
(
CT1TC1T + CT2TF

TRFC2T

)
, F ∈ S,

where

AT = TAT−1, PT = (T−1)TPT−1,

B1T = TB1, B2T = TB2, C1T = C1T
−1.

By defining K := F C2T = [F Om×(n−p) ], we obtain the
equivalent

minimize J = trace
(
PB1B

T
1

)
subject to (A−B2K)T P + P (A−B2K)

= −
(
(T−1)T QT−1 + KTRK

)
,

K = [K1 K2 ], K1 ∈ S, K2 = 0,

where we drop the subscript T for notational convenience.
The structural constraint F ∈ S for the output feedback gain
is preserved in K1 ∈ S under the coordinate transformation.
The extra constraint K2 = 0 is a consequence of the implicit
constraint imposed by the output matrix C2.

One can now define the structure on state feedback gain,
e.g., as K ∈ K with K = [S Om×(n−p) ]. With a
slight abuse of notation, however, we will still use S as the
subspace of the structured gains and the structure will be
clear from the context.

To formulate the Lagrange dual problem, we need to
determine a more convenient representation of the algebraic
constraints on K. To this end, we rewrite the constraint
K ∈ S in the form of an equivalent set of trace constraints.
Let Eij := eie

T
j , with ei denoting the ith standard basis

vector [23]. The constraint kij = 0 can be written as

kij = trace (eTi Kej) = trace (ETij K) = 0.

Thus, the structural constraint on K is equivalent to a set of
trace constraints

trace (ETij K) = 0, (i, j) ∈ Scij ,

where set Scij of the index pairs {(i, j)} identify the zero
entries of K. Similarly, set Sij identifies the nonzero entries

of K ∈ S. For example, Scij = {(1, 2), (2, 1)} and Sij =
{(1, 1), (2, 2)} correspond to the diagonal structure on 2× 2
matrices.

Thus, we have

minimize J = trace
(
PB1B

T
1

)
subject to (A−B2K)T P + P (A−B2K)

= −
(
(T−1)T QT−1 + KTRK

)
,

trace (ETij K) = 0, (i, j) ∈ Scij .

We are now ready to employ the standard Lagrange multi-
plier theory to form Lagrangian and the corresponding dual
problem [20], [21]. The Lagrangian is given by

L(K, ν) = trace
(
P (K)B1B

T
1

)
+
∑

(i,j)∈Sc
ij

νij trace(ETij K),

where νij ∈ R is the Lagrange multiplier associated with
constraint trace (ETij K) = 0. By introducing

Eν :=
∑

(i,j)∈Sc
ij

νijEij ,

Lagrangian can be written compactly as

L(K, ν) = trace
(
P (K)B1B

T
1

)
+ trace (ETν K), (4)

where P (K) is the unique positive definite solution of the
Lyapunov equation

(A−B2K)T P + P (A−B2K) = −
(
QT + KTRK

)
with QT = (T−1)T QT−1.

The dual function evaluated at the dual variable ν :=
{νij , (i, j) ∈ Scij} is given by the minimum of the La-
grangian, i.e.,

g(ν) := minimize L(K, ν).
K

Note that K must be a stabilizing gain for the minimization
of Lagrangian to be meaningful. Also note that the dual
variable ν is subject to an implicit constraint ν ∈ D such
that Lagrangian is bounded below. In other words, the dual
function is defined on the set

D = { ν | g(ν) > −∞}. (5)

For a given dual variable ν, the dual function is always
a lower bound to the global optimal value of the primal
problem (SH2). The best (greatest) lower bound is obtained
by solving the so-called dual maximization problem

maximize g(ν) subject to ν ∈ D. (D)

The dual problem is always convex [20], [21] regardless of
the nonconvexity of the primal problem. In particular, it can
be shown [20] that the domain D is convex and the dual
function g(ν) is concave over D.

B. Alternating method

In this section, we determine the necessary conditions for
the Lagrangian optimality in the form of two coupled equa-
tions. These coupled equations for the structured problem
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generalize the standard algebraic Riccati equation for the
unstructured problem. We propose an alternating method to
solve the coupled equations to minimize Lagrangian.

One approach to the Lagrangian minimization problem is
to employ the quasi-Newton method developed in Section III.
Alternatively, we study the necessary conditions for the
optimality of Lagrangian. The gradient of Lagrangian

L(K, ν) = J(K) + trace(ETν K)

is given by

∇L(K, ν) = ∇J(K) + Eν

= 2 (RK −BT2 P )L + Eν ,
(6)

where L,P are the solutions of the Lyapunov equations

(A−B2K)L + L (A−B2K)T = −B1B
T
1 ,

(A−B2K)T P + P (A−B2K) = −(QT +KTRK).

Thus, the necessary conditions for Lagrangian optimality are
given by

2(RK −BT2 P )L+ Eν = 0,
(A−B2K)L + L (A−B2K)T = −B1B

T
1 ,

(A−B2K)T P + P (A−B2K) = −(QT +KTRK).
(7)

Assuming the pair (A − B2K,B1) is controllable, L is
positive definite and hence invertible. Thus,

K = R−1BT2 P − (1/2)R−1EνL
−1. (8)

Substituting (8) into the two Lyapunov equations in (7) yields

(A−B2R
−1BT2 P )L+ L(A−B2R

−1BT2 P )T +Mν = 0,

ATP + PA− PB2R
−1BT2 P+

QT + (1/4)L−1ETν R
−1EνL

−1 = 0,
(9)

where

Mν = B1B
T
1 + (1/2)(B2R

−1Eν + ETν R
−1BT2 ).

Recall that the standard algebraic Riccati equation (ARE)
is

ATP + PA − PB2R
−1BT2 P + QT = 0 (10)

and the centralized state feedback gain is Kc = R−1BT2 P
with the unique solution P > 0 of the ARE (10). Note that
Eqs. (9) generalize the ARE (10) to two coupled equations:
one Lyapunov equation in L and one ARE in P . These
two equations are coupled through the dual variables in Eν .
The centralized feedback gain Kc is recovered by setting
Eν = 0 in Eq. (8); and the ARE (10) for unstructured
problems is recovered by setting Eν = 0 in the ARE for
P in (9). Furthermore, since (A,QT ) is observable and
L−1
k ETν R

−1EνL
−1
k is positive semi-definite, the pair

(A, QT + (1/4)L−1
k ETν R

−1EνL
−1
k )

is also observable. Therefore, there exists a unique positive
definite solution P of the ARE in Eqs. (9).

Denoting Z = L−1, and pre-multiplying and post-

multiplying Z to the Lyapunov equation of L in Eqs. (9)
yields the following coupled algebraic Riccati equa-
tions (CAREs)

(A−B2R
−1BT2 P )TZ + Z(A−B2R

−1BT2 P )+

ZMνZ = 0,

ATP + PA− PB2R
−1BT2 P+

QT + (1/4)ZETν R
−1EνZ = 0.

Related CAREs from the study of linear-quadratic Nash
game have been studied in [24]–[27]. However, a direct
numerical method to solve the coupled Riccati equations is
currently unknown [26]. In view of this, we next consider
an alternating method to solve the coupled equations (9).

Alternating method
Given Eν , L0 > 0;
for k = 0, 1, . . . , repeat

1) solve for positive definite Pk

ATPk + PkA − PkB2R
−1BT2 Pk +

QT + (1/4)L−1
k ETν R

−1EνL
−1
k = 0;

2) solve for Lk+1

(A−B2R
−1BT2 Pk)Lk+1 + Lk+1(A−B2R

−1BT2 Pk)T

+ Mν = 0;

3) if ‖Rk‖F < ε, where

Rk = ATPk + PkA − PkB2R
−1BT2 Pk +

QT + (1/4)L−1
k+1E

T
ν R
−1EνL

−1
k+1;

stop and return Lk+1, Pk as the solutions.
end

Similar alternating methods to solve coupled Lyapunov
equations (NC1), (NC2) and (NC3’) arising from the optimal
static output feedback problem have been proposed in [3],
[4]. Although there is no proof for convergence of the
alternating method, we consider it as an alternative to the
quasi-Newton method for large-scale Lagrangian minimiza-
tion problems.

C. Subgradient method

In this section, we employ the standard subgradient
method [20] to solve the dual problem. The reason for
employing the subgradient method is that the dual function
is not differentiable at the optimal point if there exists a
nonzero duality gap [20, section 6.1]. Since, in general,
(SH2) is a nonconvex problem (implying possibility of du-
ality gap), the nondifferentiability issue of the dual function
cannot be ignored. Another motivation for use of subgradient
method is that the subgradient is obtained at essentially no
computational cost; it only requires evaluation of the dual
function [20]. This is advantageous in computations since the
number of dual variables {νij} is large due to the sparsity
of K. Furthermore, the subgradient method is simple and
robust. Its only drawback is a slow convergence rate [20].

Let Kν be the minimizer of Lagrangian (4) for given dual
variable ν = {νij}. Then it can be shown [20, section 6.1]
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that one subgradient direction of νij is given by

ν̃ij = trace (ETij Kν) = kνij .

The subgradient can be rewritten compactly as

Ẽν :=
∑

(i,j)∈Sc
ij

ν̃ijEij =
∑

(i,j)∈Sc
ij

kνij
Eij = Kν ◦ IcS .

We next give the subgradient algorithm and then provide
more details about the implementation.

Subgradient method to solve dual problem (D)
Given ν0 = 0, E0

ν = 0, K0
ν = Kc, solve for L0

ν

(A−B2Kc)L0
ν + L0

ν (A−B2Kc)T = −B1B
T
1 ;

for i = 0, 1, . . . , repeat
1) form subgradient Ẽiν = Ki

ν ◦ IcS ; update Ei+1
ν =

Eiν + si Ẽiν ,
where si = η(J(K?

p ) − g(νi))/‖Ẽiν‖2F with constant
0 < η < 2;

2) if the quasi-Newton method is employed for La-
grangian minimization, use Ki

ν as initial condition to
obtain minimizer Ki+1

ν for L(K, νi+1);
if the alternating method is employed to solve
Eq. (9), use Liν as initial condition to obtain solution
Li+1
ν , P i+1

ν ; and form

Ki+1
ν = R−1BT2 P

i+1
ν − (1/2)R−1Ei+1

ν Li+1
ν .

In general, there is no formal stopping criterion for sub-
gradient method [28]. If the dual function is differentiable,
then the subgradient is exactly the gradient direction. Then,
‖Ẽiν‖2F < ε can be used as a the stopping criterion. In this
case, the minimizer K?

ν of the Lagrangian L(K, ν?) for the
optimal dual variable ν? satisfies

‖Ẽ?ν‖2F = ‖K?
ν ◦ IcS‖2F < ε.

Also note that differentiability of the dual function at optimal
point implies that there is no duality gap. Hence, if the sub-
gradient vanishes at the optimal point, it provides numerical
evidence of zero duality gap.

Remark 1: The subgradient method is closely related to
the so-called multiplier method [1], [20], which was in-
troduced to alleviate the difficulty of finding an initial
structured stabilizing feedback gain in [1]. By minimizing
the augmented Lagrangian [1], [20], the multiplier method
converges to a local minimum of (SH2). In general, the
multiplier method is effective for small size problems. How-
ever, the optimization variable in the augmented Lagrangian
minimization is also a full matrix, which limits its efficiency
for large-scale problems.

V. AN EXAMPLE

This section contains a mass-spring example to illustrate
the efficiency of quasi-Newton (BFGS) method to solve
primal problem (SH2). We also present results obtained by
solving dual problem (D) using subgradient method. We
implement the alternating method to minimize Lagrangian in
each subgradient step. One surprising fact is that duality gap
is very small and the optimal feedback gains from solving the

primal and dual problems are also very close to each other. In
other words, solutions of primal and dual problems provide
tight estimates on the global optimal value. This indicates
that the feedback gains resulting from the primal problem
can be effectively considered as the global optimal feedback
gains.

Fig. 1. Mass-spring system.

We consider a mass-spring system consisting of N masses
and N + 1 springs on a line, Fig. 1. The dynamics of the ith
mass mi is given by

mip̈i + ki−1(pi − pi−1) + ki(pi − pi+1) = ui + di,

where pi represents the displacement from a reference po-
sition of the ith mass and ki is the spring constant of the
ith spring. We assign unit values to {mi, ki}. The first and
the last masses are connected to fixed boundaries; hence,
p0 ≡ 0, ṗ0 ≡ 0, pN+1 ≡ 0, ṗN+1 ≡ 0. By selecting the
state variables ψ1 := col {pi} and ψ2 := col {ṗi}, i =
{1, 2, . . . , N}, the state-space representation is determined
by

A =
[
ON IN
TN ON

]
, B1 = B2 =

[
ON
IN

]
,

where TN := toeplitz([ −2 1 0 · · · 0 ]) of size N × N
and ON is N×N zero matrix. We consider structured state-
feedback design with C2 = I , and Q, R also being identity
matrices. The state feedback consists of position and velocity
feedback gains K = [Kp, Kv ]. We consider two cases: (a)
the completely decentralized case where both Kp and Kv are
diagonal matrices; and (b) the nearest-neighbor interactions
where both Kp and Kv are tridiagonal matrices.

We implement the computations in MATLAB R2008a
on a personal computer with 3.2GHz CPU and 2.5GB
RAM. We solve the primal problems using quasi-Newton
method initialized by the truncated state feedback gains.
The stopping criterion of quasi-Newton method for (SH2)
is ‖∇J(K)‖F < 10−5. In the subgradient method, the
step-size constant is η = 0.5 and the stopping criterion is
‖Ẽν‖F < 10−5. In Lagrangian minimization, the stopping
criterion for the alternating method is ‖Rk‖F < 10−3. The
computation results are reported in Table I, where time is in
seconds and J? is the optimal value. We define

κJ :=
J? − g?

J?

to measure the duality gaps, where g? is the optimal dual
value obtained by solving the dual problem.

VI. CONCLUDING REMARKS

We consider the optimal design of static structured feed-
back gains for large-scale interconnected systems. We de-
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TABLE I
COMPUTATION RESULTS FOR A MASS-SPRING SYSTEM

diagonal Kp and Kv

N Time(sec) J? κJ
50 2.0 6.7226×101 1.6720×10−7

100 11 1.3464×102 8.3315×10−8

200 75 2.6947×102 4.3273×10−8

tridiagonal Kp and Kv

N Time(sec) J? κJ
50 2.5 6.5631×101 8.2253×10−8

100 15 1.3139×102 8.4465×10−8

200 93 2.6291×102 8.5566×10−8

(a)

(b)

Fig. 2. Comparison of elements on the main diagonals of feedback gains
for diagonal Kp and Kv : (a) position feedback gains; (b) velocity feedback
gains.

velop efficient implementation of quasi-Newton method for
sparse matrices. We formulate and solve the dual problem to
obtain a lower bound to the optimal performance index. It is
observed that in the mass-spring example, the upper bounds
from solving the primal problems and the lower bounds
from solving the dual problems correspond to each other,
suggesting that the global optimal gains are attained. Similar
observation was made in several other examples not reported
here.

Our future research will be aimed at identifying the
underlying structures that have zero duality gaps. It is also
of interest to study (SH2) problem with additional inequality
constraints to address practical implementation issues such
as actuator saturations. We also intend to apply the developed

methods to the vehicular formation problems, which have re-
ceived considerable attention in recent years but a systematic
procedure for the design of optimal localized controllers is
yet to be developed.
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